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A hitherto unavailable analytical solution to the boundary value problem of free
vibration response of shear-flexible antisymmetric cross-ply laminated cylindrical
panels is presented. The equivalent single layer approach based on a first order
shear deformation theory including rotary and in-plane inertias is incorporated
into the shell formulation. The characteristic equations of the panel are defined
by five highly coupled second and third order partial differential equations in five
unknowns, i.e., three displacements, and two rotations. A recently developed
solution methodology, based on a boundary-continuous double Fourier series
approach, is utilized to solve the eigenvalue problem. Numerical results presented
for various parametric effects such as length-to-thickness ratio, radius-to-thickness
ratio, aspect ratio, and major-to-minor modulus ratio, etc., should serve as a
bench mark for future comparison. A four-node shear-flexible finite element is
selected to compare the results with the present solution.
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1. INTRODUCTION

Free vibration response studies of structural components farbicated with
advanced fiber reinforced laminated composite materials such as graphite/epoxy,
E-glass/epoxy, boron/epoxy, Kevlar-49/epoxy, etc., have received a great deal
of attention in recent years. This study provides the characteristic properties
of such components. These structural components, which are commonly in
the form of plates, cylindrical panels, doubly curved panels or shells, etc., and
used in aircraft fuselages, rocket motor cases, submarine fuselages, etc., play
a great role in weight saving through use of composite materials possessing
high strength-to-weight ratio and stiffness-to-weight ratio properties. These
components require an aeroelastic tailoring which is essentially manipulation
of structural responses, such as natural frequencies, divergence, and flutter
speed, etc., for an optimized performance. Recent advancement in composites
in the commercial aircraft sector, e.g., all-composite empennages on the Boeing
7J7 and Douglas MD-91X, is to limit sonic fatigue caused by the new fuel
efficient propfan or unducted fan (UDF) engines. All this advancement and
utilization demand more understanding, in terms of characteristic properties of
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such structural components. In this paper, the study is geared towards a general
antisymmetric cross-ply laminated cylindrical panel.

The theoretical development in the field of linear elastic shell/panels has received
a respected amount of consideration by numerous authors [1–14], in the past few
decades, who have utilized various approximations with respect to the
three-dimensional theory of curved deformable bodies. The above works have
generated mainly three types of shell theories: Thin Shell Theory (TST),
Moderately-Thick Shell Theory (MTST), and a more accurate moderately Thick
Shell Theory (THST). The first shell theory (TST) completely ignores the effects
of shear deformation, while the second one (MTST) considers a constant variation
of it across the thickness. The last shell theory, THST, is based on a parabolic
variation of transverse shear deformation, where transverse shear stress vanishes
at the top and bottom surfaces of the shell thickness. The aforementioned three
theories are known as equivalent single layer theories and are applied to laminated
shells/panels/plates. For a spatial response, though the THST ranks highly, the use
of MTST is popular because of its simplicity in formulation. Therefore, in this
paper the MTST will be employed for developing a set of partial differential
equations that characterizes the antisymmetric cross-ply cylindrical panel behavior
in dynamic response.

In order to consider the effects of curvature in the shell formulations various
theories were developed, namely, Donnell [15], Love [1], Flugge [11], Sanders [7],
Donnell–Mushtari–Vlasov [9] shell theories, etc., are popular among them. In this
paper consideration will be given to the Sanders [7] curvature-based shell theory.
The aforementioned shell theories were initially developed for isotropic materials,
and later extended for laminated composite materials [16–18].

The efforts of development as seen for the case of shell theories are not as
conspicuous as for the case of development of analytical techniques for solving
boundary value problems of these shells. These are, in part, due to the rapid
growth experienced by such popular approximate numerical methods, e.g., finite
difference and finite element methods, but more significantly due to the formidable
difficulties posed by the system of highly coupled partial differential equations that
arise from the in-plane bending, bending–twisting coupling effects due to the
lamination sequence, and stacking pattern, and most importantly fulfilling the
necessary conditions associated with prescribed admissible boundary conditions.
The intention of the present study is to develop a suitable analytical solution, for
a free vibration response of a cylindrical panel with antisymmetric cross-ply
lamination.

The majority of the studies on cross-ply shells and panels utilized either TST
or MTST. Stavsky and Lowey [19], Jones and Morgan [20], and Greenberg and
Stavsky [21] have all utilized the TST in obtaining analytical solutions to the
vibration and buckling problems of cross-ply cylindrical shells. The TST-based
analytical solutions for vibration and buckling response of cross-ply cylindrical
panels were presented by Soldatos and Tzivandis [22]. Jones and Morgan [20] and
Soldatos and Tzivandis [22] have used Donnell’s [15] kinematic relation, while
Stavsky and Lowey [19] and Greenberg and Stavsky [21] have utilized a Love [1]
type theory. However, in another work Soldatos [17] has discussed four
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well-known shell theories, Donnell [15], Love [1], Sanders [7], and Flugge [11],
using the approximate Galerkin’s approach. Soldatos [23] has also presented the
solution of vibration problem of cross-ply cylindrical shells utilizing the second
approximation of Flugge-type theory. Dong, Pister and Taylor [24] have
developed a theory for anisotropic thin shells, employing Donnell’s [15] shell
theory, and presented only solutions for cross-ply laminates.

Gulati and Essenberg [25] and Zukas and Vinson [26] have introduced MTST
in studying the behavior of complete cylindrical shells with isotropic materials.
Dong and Tso [14] have obtained analytical solution to free vibration problems
of cross-ply shells, based on MTST. Sinha and Rath [27], using MTST, have
presented exact solutions, for circular cylindrical panels with cross-ply lamination.
They have used Donnell’s kinematic relation in the shell formulations. Bert and
Kumar [18] have successfully obtained MTST-based exact solutions vibration
problems. Reddy [16] using Sanders kinematic relations for MTST has presented
an analytical solution to cross-ply doubly curved shells and cylindrical panels. The
solution approach adopted by Bert and Kumar [18] and Reddy [16] was based on
the Navier’s theory of double Fourier series method. Recently, Librescu et al. [28]
and Khdeir et al. [29] have reported analytical solutions to various boundary
conditions for cross-ply cylindrical panels with MTST. The solution methodology
that they have used is according to Levy’s approach. The above mentioned two
approaches—Navier and Levy types—can handle only limited number of
boundary conditions. As for example, boundary conditions with (1) displacement
restrained along transverse direction and normal to the support, and (2) rotations
restrained about the normal to the support, may not be easily handled by the
above methods. As a matter of fact this boundary condition with MTST to the
vibration response of antisymmetric cross-ply lamination is yet to be addressed
analytically, a gap in the analytical study still exists.

Therefore, the purpose of the present investigation is to develop an analytical
solution scheme for the aforementioned boundary conditions, for the dynamic
response of a cylindrical panel with antisymmetric cross-ply laminations.

2. BASIC EQUATIONS

A laminated cylindrical panel of total thickness, h, is shown in Figure 1. The
thickness of the kth layer is denoted by t(k) = ak

3 − ak−1
3 , in which a(k)

3 and a(k−1)
3 ,

k=1, 2, . . . , N, are the distances from the reference surface to the outer and inner
faces, respectively, of the layer measuring away from the mid-depth of the panel.
An orthogonal curvilinear co-ordinate system is selected to define the geometry
of the panel. The co-ordinate system is placed at the mid height of the panel
thickness. The curvilinear axes a1a2 define the reference surface (a3 =0) to the
panel. The radius R is measured to the reference surface. The span a is measured
along the axis a1, while the span b is along the a2-axis. The equations of motion,
based on the Sanders [7] moderately deep shell theory, can be written as

1N1

1a1
+

1N6

1a2
+
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1a2
+
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R
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−
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Figure 1. A cylindrical panel.

1Q1

1a1
+

1Q2

1a2
−

N1

R
=m3,

1M1

1a1
+

1M6

1a2
−Q1 =m4,

1M6

1a1
+

1M2

1a2
−Q2 =m5, (1a–e)

where N1, N2, and N6 are the surface parallel stress resultants, while M1, M2, and
M6 are stress couple resultants, and Q1 and Q2 are the transverse shear stress
resultants, all per unit length. mi (i=1, . . . , 5) are defined as

m1 =0r1 +
2r2

R 1ü1 +0r2 +
2r3

R 1f� 1, m2 = r1ü2 + r2f� 2, m3 = r1ü3,

m4 =0r2 +
r3

R1ü1 + r3f� 1, m5 = r2ü2 + r3f� 2, (2a–e)

Figure 2. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=1, R/a=10 and a/h=10. Key: ––, l1; · · · · , l2; – · · –, l3; – · –, l4; - - -, l5; –r–, l6; –×–,
l7.
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Figure 3. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=1, R/a=10 and a/h=20. Key as for Figure 2.

in which surface-parallel and rotatory inertias are included. ui (i=1, 2, 3)
represent the displacement components of the reference surface along ai

(i=1, 2, 3)-axes, respectively. fi (i=1, 2) represent rotations of normal about ai

(i=1, 2)-axes, respectively. ( ¨ ) represents second derivative with respect to time.
ri (i=1, 2, 3) are defined as

(r1, r2, r3)= s
N

K=1 g
a(k)
3

a
(k−1)
3

r(k)(1, a3, a2
3 ) da3, (3)

where r(k) and N represent the density of the layer material, and the total number
of layers, respectively. For a general cross-ply laminated panel, surface-parallel
stress resultants, Ni , stress couples, Mi , and transverse shear stress resultants, Qi ,

Figure 4. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=1, R/a=10 and a/h=50. Key as for Figure 2.
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Figure 5. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=5, R/a=10 and a/h=10.

are related to the mid-surface strains, e0
i , and changes of curvature and twist, ki ,

by

Ni =Aije
0
j +Bijki (i, j=1, 2), N6 =A66e

0
6 +B66k6,

Mi =Bije
0
j +Dijkj (i= j=1, 2), M6 =B66e

0
6 +D66k6,

Q1 =A55e
0
5 Q2 =A44e

0
4 , A55 =K2

1A55, A44 =K2
2A44, (4a–h)

where Aij , Bij , and Dij [30] are extensional, coupling, and bending rigidities,
respectively. A44 and A55 [30] represent transverse shear rigidities. K2

1 and K2
2 are

shear correction factors. e0
j ( j=1, 2, 4, 5, 6) and kj ( j=1, 2, 6), related

displacement functions and their derivatives, are as defined in reference [31], and
not presented here for the sake of brevity.

Figure 6. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=5, R/a=10 and a/h=20.
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Figure 7. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=5, R/a=10 and a/h=50. Key as for Figure 2.

Introduction of equations (4) into equations (1) yields five highly coupled partial
differential equations with constant coefficients. These equations can be written
in a matrix form as:

Lv= f, (5)

where

Lij =Lji , i, j=1, . . . , 5, vT = {u1, u2, u3, f1, f2},

fT = {m1, m2, m3, m4, m5}. (6a–c)

The operators Lij can be written as follows:

L11 =−
A55

R2 ( )+A12( ),a1a1 +0A66 +
2
R

B66 +
1
R2 D661( ),a2a2

L12 =0A12 +A66 −
1
R21( ),a1a2, L13 =0A11

R
+

A55

R 1( ),a1a2,

L14 =−
A55

R
( )+B11( ),a1a1 +0B66 +

1
R

D661( ),a2a2,

L15 =0B12 +B66 −
1
R

D661( ),a1a2, L22 =0A66 −
2
R

B66 +
1
R2 D661( ),a1a2,

L23 =
A12

R
( ),a2, L24 =0B12 +B66 −

1
R

D661( ),a1a2,

L25 =0B66 −
1
R

D661( ),a1a2,



9
0

3
m = n

5

40

20

7

60

80

. . . 608

L33 =−
A11

R2 ( )+A55( ),a1a1 +A44( ),a2a2, L34 =0A55 −
B11

R 1( ),a1,

L35 =0A44 −
B12

R 1( ),a2, L44 =−A55( )+D11( ),a1a1 +D66( ),a2a2,

L45 =−(D12 +D66)( ),a1a2,

L55 =−A44( )+D66( ),a1a1 +D22( ),a2a2. (7a–o)

Admissible boundary conditions of the following form are chosen:

u1(0, x2)= u1(a, x2)= u2(x1, 0)= u2(x1, b)=0,

u3(0, x2)= u3(a, x2)= u3(x1, 0)=32(x1, b)=0,

N6(0, x2)=N6(a, x2)=N6(x1, 0)=N6(x1, b)=0,

M1(0, x2)=M1(a, x2)=M2(x1, 0)=M2(x1, b)=0. (8a–d)

The main objective here is to solve equation (5) in conjunction with equation (8).

3. SOLUTION TO THE BOUNDARY VALUE PROBLEM

The assumed solution functions for the finite dimensional cross-ply laminated
cylindrical panel boundary value problem are selected in terms of double Fourier
series in the following form [31]:

u1(a1, a2, t)= s
a

m=1

s
a

n=0

CI
mn sin 0mpa1

a 1 cos 0npa2

b 1 eivt,

Figure 8. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=1, R/a=50 and a/h=50.
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Figure 9. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=2, R/a=50 and a/h=50.

u2(a1, a2, t)= s
a

m=0

s
a

n=1

CII
mn cos 0mpa1

a 1 sin 0npa2

b 1 eivt,

u3(a1, a2, t)= s
a

m=1

s
a

n=1

CIII
mn sin 0mpa1

a 1 sin 0npa2

b 1 eivt,

f1(a1, a2, t)= s
a

m=0

s
a

n=1

CIV
mn cos 0mpa1

a 1 cos 0npa2

b 1 eivt,

f2(a1, a2, t)= s
a

m=1

s
a

n=0

CV
mn sin 0mpa1

a 1 cos 0npa2

b 1 eivt, (9a–e)

where Ci
mn (i=I, . . . , V) are Fourier constants; i is defined as z−1; and v

indicates an eigenvalue.
It is worth mentioning here that the above solution functions are successful for

the case of antisymmetric angle ply laminated cylindrical panels where the Navier’s
approach has been utilized [16], and these functions have never been applied for
the use of cross-ply laminated panels. The above solution functions completely
satisfy the boundary conditions as prescribed by un , u3, and ft at the respective
edges. Therefore, their first derivatives may be obtained without any difficulties.
As the governing partial differential equations contain second derivatives,
therefore, it is a necessary condition that the first derivative be derivable. An
example can be given with ( ),a1a1, taking the displacement function of u2 as it
appears in the term L11:

1u2

1a1
=− s

m=1

s
n=1

CII
mn

mp

a
sin 0mpa1

a 1 sin 0npa2

b' 1 eivt, 0Q a1 Q a, 0E a2 E b.

(10)
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Figure 10. Convergence characteristics of natural frequencies (l1–l7) of a cylindrical panel with
a/b=5, R/a=50 and a/h=50.

The further derivative of it with respect to a1 cannot be performed in an ordinary
sense, as it shows discontinuities at the edges a1 =0 and a. In such a situation
1u2/1a1 is then expanded into the form as prescribed by Hobson [32], Goldstein
[33], Green [34], Green and Hearmon [35], Whitney [36], Whitney and Leissa [37],
Chaudhuri [38], Kabir [31, 39], Chaudhuri and Kabir [40–43], and Kabir and
Chaudhuri [44] in the following form:

u2,11(x1, x2, t)=61
2 s

a

n=1

CII
on sin 0mpa1

a 1
+ s

a

m=1

s
a

n=1 $−m2p2

b2 CII
mn + �0, 1�bI

n + �1, 0�bII
n % cos 0mpa1

a 1 sin 0npa2

b 17 eivt,

0E a1 E a, 0E a2 E b, (11)

Figure 11. Variations of normalized lowest seven eigenvalues for various a/h for a cylindrical
panel with a/b=1, R/a=10 and m= n=7.
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Figure 12. Variations of normalized lowest seven eigenvalues for various a/h for a cylindrical
panel with a/b=2, R/a=10 and m= n=7.

where �0, 1� equals 1 if m or n is even, and zero if m or n is odd. �1, 0� indicates
the reverse of �0, 1�. The unknowns, bI

n and bII
n , can be related to u2,1 obtained

at the boundaries in the following form:

u2,1(0, x2)=−
a
4

s
a

n=1

(bI
n + bII

n ) sin 0npa2

b 1 eivt,

u2,1(a, x2)=+
a
4

s
a

n=1

(bI
n − bII

n ) sin 0npa2

b 1 eivt. (12)

Figure 13. Variations of normalized lowest seven eigenvalues for various a/h for a cylindrical
panel with a/b=5, R/a=10 and m= n=7.
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Figure 14. Variations of normalized lowest seven eigenvalues for various R/a for a cylindrical
panel with a/b=1, a/h=10 and m= n=7.

The similar applications are performed wherever applicable. Finally, the
differential equations (5) together with the boundary conditions (8) will generate
the necessary unknowns equal to number of equations.

A computer program AFSANA-VIB (A Fourier Series ANAlysis-VIBration)
has been developed using FORTRAN code on a SUN workstation. The
eigenvalues and mode shapes are computed calling the commercial software IMSL
[45] as a subroutine.

4. NUMERICAL RESULTS AND DISCUSSIONS

In what follows, numerical results for natural frequencies and mode shapes of
cylindrical panels with various parametric effects are presented. The following
material properties of a graphite/epoxy lamina are considered: E1 =76E3 GPa,

Figure 15. Variations of normalized lowest seven eigenvalues for various R/a for a cylindrical
panel with a/b=2, a/h=10 and m= n=7.
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Figure 16. Mode shape, u3(1,1) for a cylindrical panel with a/b=1, R/a=10 and a/h=10.

E2 =5·5E3 GPa, n12 =0·34, E1n21 =E2n21, G13 =2·5E3 GPa, G12 =1·5E3 GPa,
G23 =2·5E3 GPa, K2

1 =K2
2 =5/6, where E1 and E2 are the major and minor surface

parallel Young’s moduli along and across the fiber direction of a lamina,
respectively. n12 denotes the major Poisson’s ratio. G13, G12, and G23 are shear
moduli. For the sake of convenience, the natural frequencies are presented in a
normalized form. The following is the relation for normalization: li = l�ia2

(zr/E2)/h, i=1, 2, . . . , where l�i represents the ith lowest natural frequency, and
li its corresponding normalized one. A total of seven lowest natural frequencies
are computed. A convergence study of the first seven lowest frequencies for a
cylindrical panel with a/b=1 and R/a=10, and various a/h (=10, 20, 50) is

Figure 17. Mode shape, u3(1,2) for a cylindrical panel with a/b=1, R/a=10 and a/h=10.
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Figure 18. Mode shape, u3(1,3) for a cylindrical panel with a/b=1, R/a=10 and a/h=10.

presented in Figures 2–4, respectively. For all a/h, li (i=1–7) converge
satisfactorily with the increase of the number of terms in the Fourier series.
Figures 5–7 illustrate convergence of li (i=1–7) for a/b=5, R/a=10, and
a/h=10, 20 and 50, respectively. The normalized li (i=1–3) converge very
convincingly, while for li (4–7) high oscillations are noticed for m= nQ 7, and
they diminish with m= nq 7. Figures 8–10 plot the convergence of li (i=1–7)
for a cylindrical panel with R/a=50, a/h=50, and a/b=1, 2, and 5, respectively.
All of them show satisfactory convergence with m= nq 7. Variations of the
eigenvalues (li , i=1–7) for a panel with a/b=1, R/a=10, and m= n=7 for

Figure 19. Mode shape, u3(2,1) for a cylindrical panel with a/b=1, R/a=10 and a/h=10.
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Figure 20. Mode shape, u3(2,2) for a cylindrical panel with a/b=1, R/a=10 and a/h=10.

various a/h are elucidated in Figure 11. A natural frequency increases with an
increment of a/h, a feature which is more prominent in the higher frequencies than
in the lower ones. The same situations are not achieved for the case of the seam
cylindrical panel but with a/b=2 (Figure 12). The natural frequencies increase
until a/h=40, then start decreasing. This is more conspicuous in the higher
frequencies. Figure 13 illustrates the natural frequencies (li , i=1–7) for a
cylindrical panel with a/b=5; R/A=10, and m= n=7. The frequencies increase
with the increase of a/h. Figures 14 and 15 plot frequencies (li , i=1–7) for a panel
with a/b=1, and a/b=2, respectively, for various radius-to-span ratios. The
frequencies remain fairly constant for the range studied. Various mode shapes are
plotted in Figures 16–20. In u3(i, j), (i, j) indicates mode shape associated with u3.

T 1

Comparison of present solution with available finite element [42]
results for a cylindrical panel with b/a=1, R/a=10, and a/h=10

and 50

a/h=10 a/h=50
ZXXXXCXXXXV ZXXXXCXXXXV

Eigenvalues Analytical NISA [42] Analytical NISA [42]

l1 11·00 10·78 18·60 18·15
l2 25·40 19·84 31·50 25·00
l3 26·90 20·19 37·80 28·00
l4 31·40 26·50 44·30 35·00
l5 41·00 37·00 58·50 53·00
l6 42·28 37·30 64·00 54·00
l7 46·42 41·00 66·42 60·00
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A comparison of the results obtained from a finite element analysis is presented
in Table 1. The element that is considered is a four-node shear flexible one. The
detail of the element formulation is available in Reference [46], omitted here for
the sake of brevity. The lowest natural frequency obtained by both the methods
are in very close agreement for a/h=10 and 50. However, the same is not found
for the higher frequencies. The finite element method under predicts the natural
frequencies in all other cases. The cylindrical panel modelled with 32×32 finite
elements, shows fairly converged results.

5. CONCLUSION

An analytical solution to a cross-ply laminated cylindrical panel is presented.
The solution methodology adopted here is based on a boundary continuous
solution functions approach. The numerical results are compared to a
commercially available finite element package. The results presented should serve
as bench-mark for approximately obtained solution methods. The continuation of
this approach to buckling problems is currently underway.
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